INtime® RTOS # Scalable real-time OS designed for PC-based embedded solutions TenAsys INtime® RTOS is a dynamic, deterministic hard real-time operating system for Asymmetric Multi-Processing (AMP) on multi-core x86-compatible processors. Unlike using hypervisors, a Windows device driver, or a monolithic application, INtime RTOS is a full operating system, complete with system services and capabilities that developers expect to see in modern development environments to enable fast and efficient high-performance solutions. Capabilities include dynamic control of processes on multiple nodes (cores) on multiple hosts, and rich inter-process communication (IPC) between all nodes of the system. ### **Advanced consolidation solutions using Embedded Virtualization** Consolidation of numerous workloads using partitioned multicore PC hosts, known as "Embedded Virtualization," reduces system costs and complexity by merging different application types onto the same PC. In a heterogeneous deployment with an SMP OS, INtime RTOS runs in parallel with Windows* (32-bit and 64-bit) to utilize its extensive human machine interfaces (HMI). The system services extend support to multiple hosts, allowing creation of interoperable, distributed, real-time systems with flexible deployment models. As an AMP architecture, each node (core) runs an independent instance of INtime RTOS, with its explicit hardware partitioned – including a dedicated core, memory, I/O, and interrupts. This approach is optimal for security, reliability, and determinism, when critical response time is important. All INtime RTOS and Windows processes run natively, with support for all current versions of Windows – including Windows 10 (Figure 1). Current INtime RTOS environments remain backward compatible to applications developed for prior INtime versions, preserving your software investment. Migration libraries are provided for Windows API level real-time extension code. Figure 1. Independent OS instances with distributed system services. ### Object-based RTOS with comprehensive kernel services To accelerate time to market and simplify development, INtime RTOS provides the standard services of general purpose operating systems. These services allow programmers to rely on the OS to manage the many system tasks in their solutions without having to create their own code. INtime RTOS is object based, supporting a familiar programming methodology. The INtime RTOS kernel provides several objects and maintains the data structures that define them and their related system calls. For any created object, the kernel returns a handle for that object, which can be used in any INtime RTOS or Windows process across the distributed system. Each process executes in protected user mode (Ring 3), with up to 4GB of memory, limited only by the host resources. | Features | Benefits | |-------------------------|---| | Object management | Creates, deletes, and manipulates object types | | Time management | Provides time-of-day, time synchronization, and alarm services | | Thread management | Manages scheduling, synchronization, and run-time statistics | | Memory management | Manages physical and virtual memory for nodes and processes | | Interrupt management | Manages hardware interrupts from I/O devices | | Exception handling | Built-in handling of SW exceptions and HW faults for reliable, self-healing solutions | | Windows Registry access | Registry for interoperation between Windows and INtime RTOS environments | | Connectivity | Standard Ethernet and TCP/IP stacks, including INtime's High Performance Ethernet | | IPC Mechanism | GOBSnet, an INtime RTOS comprehensive IPC | # **Embedded virtualization through explicit hardware partitioning** INtime RTOS is a hard real-time event driven operating system with determinism measured in microseconds. Deterministic applications require dedicated and isolated resources from the host: cores, memory, and I/O. INtime RTOS was designed for deterministic applications and dedicates resources to each real-time node by explicitly partitioning the host hardware, giving the real-time application the needed resources (Figure 2). INtime RTOS is built for embedded virtualization deployments and it natively supplies a rich set of services and capabilities that developers expect in a mature operating system. Drivers for low latency are included for: - Ethernet and INtime's High Performance Ethernet (HPE), a foundation for EtherCAT*, Sercos III*, Profinet* - xHCl USB, PCI*/PCIe*, and serial ports Figure 2. Explicit Hardware Partitioning. ## Global Objects (GOBS) enable scalability and flexibility INtime RTOS provides a deterministic IPC mechanism (GOBSnet) to catalog, search, and use all created objects across the system, enabling scalability for embedded system designs (Figure 3). Using explicit hardware partitioning and asymmetric multiprocessing (AMP or core affinity), INtime RTOS enables scalability of deterministic applications across multiple nodes for performance or combined on fewer nodes for cost savings. GOBSnet delivers a comprehensive set of efficient communication services across Windows and real-time applications, whether running on the same multi-core host or across distributed hosts. Though isolated from each other, sharing across environments allows Windows services to interact with embedded functions, enabling integration and eliminating the inter-networking complexity and points of failure risks of traditional embedded designs. This provides flexibility to scale with the potentially changing topology of the solution without porting. Figure 3. Topology Independent Global Shared Object References for Mailboxes, Semaphores, Queues, and memory regions. # **Distributed Systems Manager for reliable distributed solutions** The Distributed Systems Manager (DSM) monitors all nodes and their processes to maintain continuity and availability of the entire embedded system. The DSM tracks the state of the system, monitors the health of its components, and cleans up in the event of component termination or failure. Each instance of INtime RTOS or Windows is considered a node. Any INtime node can create objects accessible from any other node, whether on a single host or across a system of distributed hosts. An advanced, integrated memory manager maintains memory allocation for each process. # **INtime RTOS summary** INtime RTOS enables a modular programming model running user-mode real-time applications instead of kernel mode driver extensions. Support for global objects, multiple IPC mechanisms, full exception and error handling, and a rich set of standard kernel services allows developers to quickly and easily create scalable and reliable embedded applications. TenAsys supports INtime RTOS solution development with a wide range of tools, including INtime Software Development Kit (SDK), which integrates into the familiar Microsoft Visual Studio environment to simplify solution creation. ### **Choose your deployment model** INtime RTOS offers two different deployment models. INtime for Windows enables a mixed solution of Windows and INtime RTOS nodes on the same host. INtime® Distributed RTOS allows running embedded applications on hosts as standalone systems or part of a distributed system (Figure 4). Applications developed on INtime RTOS can be deployed – unchanged – across either deployment model or both. Solutions are scalable to reassign and balance applications on available hosts and cores without recompiling. Figure 4. INtime RTOS Deployment models of TenAsys SW Platform. | Features | Benefits | |---|---| | Deterministic, event-driven processing | Reliable foundation for embedded real-time designs | | Host-agnostic | Flexibility and compatibility of PC hardware and software to optimize performance and cost: no board support package (BSP) required | | Flexible topology | Consolidated or distributed nodes, standalone embedded applications or alongside to Windows | | Kernel services in an object-based RTOS | Enables fast development of scalable, reliable solutions using industry programming methodology | | GOBSnet: deterministic Inter Process
Communication (IPC) | Reliable communications between RTOS and Windows processes across nodes and hosts | | Dedicated I/O interface partitioning: HPE, PCI/PCIe, Serial, and xHCI USB | Ensures determinism and eliminates potential failures due to conflicts between RTOS and Windows nodes | | Fully featured TCP/IP stack and low-level drivers | Low latency on communication to I/O devices; out-of-the-box driver support for common onboard I/Os | | SIMD library support | Use IPP and MKL libraries for optimal MMX, SSE, and AVX services | #### Reference to related data sheets: INtime Software Development Kit INtime for Windows INtime Distributed RTOS For more information visit www.tenasys.com or contact one of our world wide offices # 联系我们 广州虹科电子科技有限公司 ### Hongke Technology Co., Ltd www.hkaco.com 广州市黄埔区科学城神舟路18号润慧科技园C栋6层 邮编510663 #### 工业控制事业部 事业部网站: www.hoautom.com 微信公众号: 工业通讯 产品及方案: - ▶ 工控机(涵盖多种性能、尺寸和安装方式选择) - ▶ PLC 开发解决方案(灵活直观的 IEC61131-3 自动化平台,提供 runtime 源码和编程环境) - ▶ Windows 实时操作系统(专为基于 PC 的嵌入式解决方案而设计的可扩展 RTOS) - ▶ 现场总线与工业实时以太网开发方案(CANopen, IO-Link, EtherCAT, PROFINET, EtherNET/IP 等多种协议) - ➤ "新"以太网开发方案(TSN IPcore, HSR/PRP IPcore, 网管/非网管以太网 IPcore、同步 IPcore 等) - ▶ "新"以太网硬件解决方案 (TSN 板卡, TSN 交换机, TSN 评估套件, HSR/PRP 板卡, HSR/PRP 交换机) #### 全国 江丽凤 工业控制事业部部长 电话/微信: 13600053493 QQ: 2314743657 邮箱: jiang.lifeng@hkaco.com 联系我们:广州|上海|北京|成都|西安|苏州|台湾|香港|美国 www.hkaco.com | 广州| 成都| 上海| 苏州| 西安| 北京| 台湾| 香港| 美国| sales@hkaco.com support@hkaco.com 免费热线: 400-999-3848 传真:020-38743233